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1 Introduction

The Gravitational Waves Universe Toolbox (GWToolbox) python package are the
bundle of python codes, on which the GWToolbox website is based. It can be installed
and imported, as a more flexible way, comparing to the website interface, to simulate
observation on various of GW sources, to explore the properties of detectors and pulsar
timing array, and to incorporate the results with your codes of further searches and
publications. In this manual, I will first give a instruction on the installation of the package

in section II. And in section III, I will give tutorials on the usage of the tools in the toolbox.


gw-universe.org

2 Installation

The source codes can be downloaded from the repository:

The package is composed of three modules, namely the ground-based detectors
(and their targets), the space-borne detectors (and their targets) and pulsar timing arrays
(PTA). See illustration in figure 2.1. These three modules work independently, and have
different dependencies on other packages and libraries. That means failed dependencies
met in one module will not influence the usage of another module.

The three modules depend on some common python packages: numpy, scipy,
multiprocessing, pandas, astropy.

I will introduce the dependencies indiviudally for the three modules in the following
subsections. After the dependencies installed, the GWToolbox package can be directly

imported, after you set the environment variable:

export PYTHONPATH=folder_contain_gwtoolbox/gwtoolbox

or, cd to folder_contain_gwtoolbox/gwtoolbox, and run

python setup.py install

this will install the python packages into your default path for python packages.

tools_earth.py tools_space.py tools_pta.py
sources_kHz.py sources_mHz.py pta_pulsars.py
detectors_earth.py detectors_space.py

Figure 2.1: Three modules of the package


https://bitbucket.org/radboudradiolab/gwtoolbox
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2.1 Ground-based detectors module

The functionality of simulating the noise properties of customised LIGO-like detec-
tors is realized with PyKat!. It is a python wrapper for of the detector simulation tool
FINESSE?. Make sure the environment variables FINESSE_DIR and KATINI are set correctly

towards the folder containing executable kat.

2.2 Space-borne detectors

This module depends on the codes inside the Mock LISA data challenge (MLDC).
The relevant parts of MLDC is already included in the GWToolbox:

/gwtoolbox/gwtoolbox/MLDC-master,

cd to the directory /MLDC-master/Packages and run:

python setup_lisaxml2.py install

then cd to the directory /MLDC-master/Packages/common and run:

python setup.py install

to install common packages needed by MLDC. Then to install packages that simulate the wave-
form of sources respectively: cd to the directory /MLDC-master/Waveforms/MBH_IMR/IMRPhenomD

and run:

make

to install tools to simulate waveforms of supermassive black hole binary mergers. cd to
the directory /MLDC-master/Waveforms/fastGB and run:

python setup.py install

to install tools to simulate waveforms of Galactic compact binaries.

The simulation on the waveform of EMRIs depends on an other tool EMRI_Kludge_Suite?®.
In the original EMRI_Kludge_Suite, the arm-length of LISA is hard-coded. I revised the
source code to enable a different arm-length. The revised EMRI_Kludge_Suite is included
in the GWToolbox: /gwtoolbox/gwtoolbox/EMRI_Kludge_Suite, cd to this directory,

and run:

make

Thttps://pypi.org/project /PyKat/
2http:/ /www.gwoptics.org/finesse/
3https://github.com/alvincjk/EMRI_Kludge Suite
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to build the binaries. The GSL and FFTW libraries are required for compilation. After
this step, you will need to install the python wrapper. Make sure that in the setup.py,
the variables gsl and gslcblas are set correctly to the path of the libraries, and make
sure that your environment variable LD_LIBRARY_PATH is set properly so that the required

libraries can be found. Then run:

python setup.py install

2.3 Pulsar Timing Arrays

This module has no special dependencies.



3 Usage

3.1 Ground-based detectors

3.1.1 Simulate Observations

Import the needed packages with:

from gwtoolbox.tools_earth import set_cosmology, Tools

You can set your cosmology model with:

cosmos=set_cosmology(cosmosID)

where the arguement cosmosID can take values:
e *WMAP5’ The cosmology model implied by WMAP data release 2005
e *WMAP7’ The cosmology model implied by WMAP data release 2007
e *WMAP9’ The cosmology model implied by WMAP data release 2009
e ’Planck13’ The cosmology model implied by Planck data release 2013
e ’Planck15’ The cosmology model implied by Planck data release 2015

You can also define your own A-CDM cosmology model with:

cosmos=set_cosmology(HO=HO, Om0=0mO, Tcmb=Tcmb)

where HO is the current Hubble constant (km/s/Mpc), Om0 is the current matter fraction,

and Tcmb is the current CMB temperature (K). Then you can define your toolset with:

Toolset=Tools(detector_type=detector_type, event_type=event_type,
population=population,
COSmMOS=COSmos,

det_setup=det_setup,

new_theta=new_theta)
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where the argument detector_type defines the detector that you want to simulate, it

takes values:
e ’virgo’ advanced Virgo in the designed sensitivity;
e ’ligo’ advanced LIGO in the designed sensitivity;
e ’kagra’ KAGRA in the designed sensitivity;
e ’ligo-03’ advanced LIGO in the O3 run;
e ’et’ Einstein telescope in design;
e ’ligo-like’ customised ligo-type detector;

the argument event_type defines the source type your want to simulate your

observation on, it takes values:
e ’bhbh’ Black Hole Binary Mergers (BBH);
e ’nsns’ Double Neutron Star Mergers (DNS);
e ’>bhns’ Black Hole-Neutron Star Mergers (BHNS);

the argument population defines the paramerization of the populatioin mode. It takes
values ’I’ or >II’ for BBH and BHNS, and only takes >I’ for DNS. cosmos is the
cosmology model you set with set_cosmology.

the argument det_setup is the configuration parameters for the customised ligo-

type detector. For the default detectors,

det_setup=None

and for detector_type=’ligo-1like’, it takes value in the format:
det_setup=[["LARM_VALUE", "4000"],["PIN_VALUE", "125"],...]

which is a list of [keyword, value_in_str]. The meaning of the keywords are:

e LARM_VALUE Laser arm length in unit of meters;

PIN_VALUE Laser Power in unit of Watts;

ITMT_VALUE Cavity Mirror Transitivity;

SRMT_VALUE Signal Recycling Mirror Transitivity;

PRMT_VALUE Power Recycling Mirror Transitivity;

MTM_VALUE Mirror Mass;



3.1. Ground-based detectors 8

Default values will be used if not specified.

The argument new_theta sets the parameters in the population model. If set:
new_theta=None
default parameters will be used. The format of new_theta is a list of numbers,
e BBH-Population I: [RO, tau, mu, c, gamma, mcut, ql, sig_x]

e BBH-Population IT: [RO, tau, mu, c, gamma, mcut, m_peak, m_peak_scale, m_peak_sig

ql, sig_x]
e DNS-Population I: [RO, tau, m_mean, m_scale, m_low, m_high, chi_sigma]

e BHNS-Population I: [RO, tau, m_mean, m_scale, m_low, m_high, mu, c, gamma,

mcut, chi_sigmal

e BHNS-Population II: [RO, tau, m_mean, m_sclae, m_low, m_high, mu, c, gamma,

mcut, m_peak, m_peak_scale, m_peak_sig, chi_sigmal

See here to see the population models and the meaning of the parameters. After
you defined the toolsets, you can all the tools to simulate the observation.

To get the expected number of detection:

num=Toolset.total_numer (time_obs=time_obs, rho_cri=rho_cri)

where the argument time_obs is the duration of observation in unit of minutes, rho_cri
is the SNR threshold of detection.

To get a Pandas Dataframe of synthetic catalogue of detection:

df=Toolset.list_params_df (time_obs=time_obs, rho_cri=rho_cri,size=size)

where the argument size is the maximum number of sources to return, The meaning of

the columns are:

e z: Cosmological redshift;

D(Mpc): Luminosity Distance in unit of Mpc;

ml: Mass of the primary black hole in unit of solar mass;

m2: Mass of the secondary black hole in unit of solar mass;

X: Effective Spin;

To get a Pandas Dataframe of synthetic catalogue of detection with uncertainties:


https://gw-universe.org:4432/population_model.html
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df=Toolset.list_with_errors_df (time_obs=time_obs,

rho_cri=rho_cri,

size=size)

3.1.2 Antenna Patterns and Noise of Detector

Import needed package:

from detectors_earth import LigoLike, ETLike

To simulate a L-shaped LIGO-type detector, define:

detector=LigoLike(det)

where det takes values among ’virgo’, 1igo-03’, ’1igo’, ’kagra’, *ligo-like’ and

to simulate Einstein telescope:

detector=ETLike(det='ET"')

The antenna patterns of the detector are:

Fplus,Fcross=detector.ante_pattern(theta,varphi,psi)

where theta is the polar angle of the GW source in the detector coordinates frame; varphi
is the azimuth angle of the GW source in the detector coordinates frame; psi is the
polarization angle of the GW.

The Noise Curve can be obtained with:

freq, strain=noise_curve(pars=det_setup)

where det_setup is in the format as in the above. When simulating default detectors, set

det_setup=None and the returned freq is a list of frequency in unit of Hz, and strain is

a list of strain in unit of /1/Hz.

3.1.3 Detectability of Events and Source Population

Import the needed modules with:

from sources_kH import BHB, DNS, BHNS

when simulating observation of BBHs, define the population with:

population=BHB(cosmos)

where cosmos is the cosmology model set with set_cosmology. Populations of DNS and
BHNS can be defined similarly. The default population model is parameterization I with

default parameters. To adjust parameters, use:
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population.set_model_theta(pop=population, new_theta=new_theta)

The argument pop and new_theta take values as in Tools.
Given a source with z, m; and ms, the probability of detection of such a source

can be calculated with:

prob=population.tel_fun(z, ml, m2, rho_cri=rho_cri,
ant_fun=detector.ante_pattern,

noise_tab=detector.noise_curve)

where detector is the detector defined above. The user can also use their own noise curve,

by setting:
noise_tab=[list_of_frequencies, list_of_noise_strain]

The user can define their general own cosmic merger rate density as:

def cos_mer_rate(z,ml,m2):

....# arbitrary user defined population model

The number density distribution of expected detection is then:

def density_det(T, z, ml, m2):
return 4*np.pi*T*cos_mer_rate(z,ml,m2)*
population.tel_fun(z, ml, m2, rho_cri=rho_cri,
ant_fun=detector.ante_pattern,
noise_tab=detector.noise_curve)*

cosmos.differential_comoving_volume(z) .to_value(u.Gpc**3/u.sr)/(1+z)

The user can numerically integrate the above function to obtain the total expected detection,
or using a MCMC algorithm to obtain the synthetic catalogue, with arbitrary population

model.

3.2 Space-Borne detector

3.2.1 Simulate Observations

Import the needed packages with:

from gwtoolbox.tools_earth import set_cosmology, Tools

and set_cosmology is identical with that from tools_earth. The toolset can be defined
with:
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Toolset=Tools(popID=popID, cosmos=cosmos, det_setup=det_setup)

the argument popID take values of some float numbers, which correspond to different

sources and population models:

e 0.1: Supermassive BHB-pop3;

0.2: Supermassive BHB-Q3 delays;

0.3: Supermassive BHB-Q3 nodelays;

1.1: Galactic WD binaries in Nelemans et al. (2001);

1.2: Verification WD binaries;
e 2.01-2.11: EMRIs M1-M11;

cosmos is the cosmology model defined with set_cosmology. The argument det_setup

takes value of list of numbers:

det_setup=[1lisalT, lisaP, lisaD]

or

det_setup=[1lisalT, lisaP, lisaD,SaccO,Sopo0,Sops0]
where:

e lisalLT: light travel time along the laser arm, in second;

lisaP: laser power, in Watts;

lisaD: the diameter of the telescope on the spacecraft, in unit of m;

Sacc0: Accelaration noise in unit of Hz™!;

Sopo0: Laser Shot Noise factor, in unit of Hz™!;

Sops0: Other Optical Metrology system noises, in unit of Hz ™.

To obtain the expected number of detection, and the synthetic catalogue, run:

dataframe, totnum=Toolset.dataframe(Tobs, rho_cri, size)

The input arguments:
e Tobs observation duration, in unit of year;

e rho_cri detection threshold of SNR;
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e size maximum size of output catalogue;

the outputs dataframe is the catalogue in format of Pandas dataframe, and totnum is the
expected number of detection (integer).

To obtain the catalogue with uncertanties:

dataframe_error, totnum=Toolset.errordataframe(Tobs, rho_cri, size)

3.2.2 Detectors

The LISA noise in TDI-X channel can be output with:

freq, Stdix=Toolset.noisecurve_X()

where Toolset is defined with Tools in above, freq is frequency in Hz, and Stdix is the
corresponding noise in TDI-X response. If you only want to define the detector without

defining the population, you can:

from gwtoolbox.detectors_space import Lisalike
detector=Lisalike(lisalT=1isalT,

lisaD=1isaD,

lisaP=1isaP,

Sacc0=SaccO,

Sopo0=Sopo0,

Sops0=Sops0)

the detector parameters are define in above section. The Michaelson noise power, TDI-X

response noises and the corresponding frequency are:

Sn=detector.Sn
Sx=detector.Sx

freq=detector.fq

The TDI-X noise response at any frequency can be calcualted with:

Sx=detector.Stdix(freq)

3.2.3 SNR of given single source

For supermassive BBH, SNR of single source can be calcualted with:
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from sources_mHz import SMBHB

source=SMBHB (pop_model=None, cosmos=None)

source.SNR(p, det=detector)

where detector is the detector class set in above section, and p are the parameters of the

source, which needs to be defined as follows:

from functions_space import *
from parameters import MBHBunits
list=[....]
# a list of parameters,
# the orders and units are defined in parameters.MBHBunits
dict={}
for i in len(MBHBunits.keys()):
dict[ky[i]l]=1ist[i]

p=ParsUnits(pars_i=dict, units_i=MBHBunits)

For Galactic Binaries:

from sources_mHz import GB
source=GB (pop_model=None, cosmos=None)

source.SNR_speed(pars, Tobs, dt, det=detector)

where Tobs is the observation duration in unit of years, dt is the time resolution in unit
of seconds (doesn’t enter the calculation in SNR_speed); pars is a list of parameters:

pars=[f0,f1,ra,dec,iota,psi], whose meaning are:
e 0 the frequency of GW in unit of Hertz;
e f1 first time derivative of frequency (not used in SNR_speed);
e ra Right Ascension in rad;
e dec Declination in rad;
e iota inclination angle in rad;

e psi polarization angle in rad;

For EMRI:

from sources_mHz import EMRI

source=EMRI (pop_model=None, cosmos=None)

source.SNR(pars_cat, det, Tobs)

the argument pars_cat is a list of parameters:
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pars_cat=[tPlunge,lgmu,lgM,e,nu,gam,phi,costhetaSky, phiSky,
cosLambda, alpha, SMBHspin, costhetaSpin, phiSpin, Zetal

the meaning of the parameters are:
e tPlunge time to final plunge in seconds;
e 1lgmu logarithm (in base e) of stellar mass BH mass (in unit of seconds);
e 1gM logarithm (in base e) of Supermassive BH mass (in unit of seconds);

Check Table I of Babrack & Cutler 2004 for the meaning of rest parameters.

3.3 Pulsar Timing Arrays

3.3.1 SNR of individual Supermassive BHB

Import needed module:

from tools_pta import PTA_individual

Define the toolset with:

toolset=PTA_individual (obs_plan=obs_plan,
delta_t=delta_t,
T=T,
Ndot=Ndot,
which_PTA=which_PTA)

the meaning arguments:
e obs_plan="A": Observe with current PTAs and archival data;
e obs_plan="B": Observe with current PTA and new observations;

e obs_plan="C": Observe with current PTA and new observations plus possible new

pulsars discovered in the future;
e which_PTA takes values of ‘EPTA’, 'NanoGrav’, 'PPTA’ or 'IPTA’.

e delta_t: the average days between observations, only meaningful for obs_plan="B"

or obs_plan="C";

e T: total observation duration (years) for future observations, only meaningful for

obs_plan="B" or obs_plan="C";

e Ndot: the number of new pulsars being included in the array every year;


https://journals.aps.org/prd/pdf/10.1103/PhysRevD.69.082005
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Check the PTA with:
print(toolset.PTA)

Calculate the SNR of an individual supermassive BBH with:

toolset.SNR(ra, dec, hs, frequency, phi, iota)

where

e ra: RA in hh:mm:ss (string)

dec: Declination in dd:mm:ss (string)

hs: strain of GW;

frequency: frequency of GW in Hz;

phi: polarization anlge in rad

iota: Inclination angle in rad;

The sky-average sensitivity curve for individual SMBHB:

hs, freq=toolset.sens_curve_skyave(rhostar=rhostar)

where rhostar is the SNR criterion, freq is list of frequencies in units of Hz.

3.3.2 Upper limit on Isotropic Stochastic GW background

Import needed module by:

from tools_pta import PTA_SGWB

and define the PTA toolset with:

toolset=PTA_SGWB(cosmos=cosmos,
obs_plan=obs_plan,
delta_t=delta_t,
T=T,
Ndot=Ndot,
which_PTA=which_PTA,
which_SGWB=which_SGWB,

index=index)

the new arguments are:
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e which_SGWB: takes value among 'SBHBH’, "CS’, "Primordial” and ’selfdefine’, stands
for different origins of the stochastic GW background;

e index: when which_SGWB=’selfdefine’, user can set customised spectrum index
for the stochastic GW background;

To calculate the Upper limit for the characteristic strain:

uplimt_A=toolset.Upper_A(rho_cri)

where rho_cri is the SNR threshold, to calculate the upper limit in A?Qgqw:

uplimt_Edensity=toolset.UpperLimit (rho_cri)

To calculate the SNR for a given characteristic strain A in the PTA:

rho=toolset.SNR(A)
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